A twisted factorization method for symmetric SVD of a complex symmetric tridiagonal matrix

نویسندگان

  • Wei Xu
  • Sanzheng Qiao
چکیده

This paper presents an O(n2) method based on the twisted factorization for computing the Takagi vectors of an n-by-n complex symmetric tridiagonal matrix with known singular values. Since the singular values can be obtained in O(n2) flops, the total cost of symmetric singular value decomposition or the Takagi factorization is O(n2) flops. An analysis shows the accuracy and orthogonality of Takagi vectors. Also, techniques for a practical implementation of our method are proposed. Our preliminary numerical experiments have verified our analysis and demonstrated that the twisted factorization method is much more efficient than the implicit QR method, divide-and-conquer method and Matlab singular value decomposition subroutine with comparable accuracy. Copyright q 2009 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Takagi Factorization of a Real Symmetric Tridiagonal Matrix

Complex symmetric matrices arise from many applications, such as chemical exchange in nuclear magnetic resonance and power systems. Singular value decomposition (SVD) reveals a great deal of properties of a matrix. A complex symmetric matrix has a symmetric SVD (SSVD), also called Takagi Factorization, which exploits the symmetry [3]. Let A be a complex symmetric matrix, its Takagi factorizatio...

متن کامل

Evaluation of a New Eigen Decomposition Algorithm for Symmetric Tridiagonal Matrices

This paper focuses on a new extension version of double Divide and Conquer (dDC) algorithm to eigen decomposition. Recently, dDC was proposed for singular value decomposition (SVD) of rectangular matrix. The dDC for SVD consists of two parts. One is Divide and Conquer (D&C) for singular value and the other is twisted factorization for singular vector. The memory usage of dDC is smaller than tha...

متن کامل

Parallel Numerical Algorithms for Symmetric Positive Definite Linear Systems

We give a matrix factorization for the solution of the linear system Ax = f , when coefficient matrix A is a dense symmetric positive definite matrix. We call this factorization as "WW T factorization". The algorithm for this factorization is given. Existence and backward error analysis of the method are given. The WDWT factorization is also presented. When the coefficient matrix is a symmetric...

متن کامل

A fast symmetric SVD algorithm for square Hankel matrices

This paper presents an O(n2 log n) algorithm for computing the symmetric singular value decomposition of square Hankel matrices of order n, in contrast with existing O(n3) SVD algorithms. The algorithm consists of two stages: first, a complex square Hankel matrix is reduced to a complex symmetric tridiagonal matrix using the block Lanczos method in O(n2 log n) flops; second, the singular values...

متن کامل

On tridiagonal matrices unitarily equivalent to normal matrices

In this article the unitary equivalence transformation of normal matrices to tridiagonal form is studied. It is well-known that any matrix is unitarily equivalent to a tridiagonal matrix. In case of a normal matrix the resulting tridiagonal inherits a strong relation between its superand subdiagonal elements. The corresponding elements of the superand subdiagonal will have the same absolute val...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2009